
ROFF4 V1.61 Augest 3,1985

ROFF4, V1.60 ROFF4, V1.61

by Ernest E. Bergmann by Conrad Kwok
Physics, Building #16 20 3rd St.,Section M,
Lehigh University Fairview Park,
Bethlehem, PA 18015 Hong Kong.

ROFF4 is an expanded version of ROFF, based on the
formatter in Kernighan and Plauger's book SOFTWARE TOOLS, is
written in BDS C. Now it is adapted on IBM PC using Microsoft
C. Some of the input files may be used to "set-up" the
formatter for a particular style and for particular
hardware. It is possible to substitute keyboard input
instead of files for educational and test purposes.

95% of the code of ROFF4 V1.61 is the same as V1.60. The
changes include:

(1) Modification to run on IBM PC using Microsoft C V1.04 or
Lattice C V1.04. Most of the other C compiler should be
able to compile the program with minor modification.

(2) Implementation of macro commmand with paramters.

(3) Fixing some minor bugs.

(4) Allow changing of character size on the same line with
superscript and subscript.

ROFF was provided by Neal Somos for the public domain
via the BDS 'C' Users' Group's volume, CUG -- "Just Like
Mom's". Some of this documentation started there as well.

This formatter contains features important for the
preparation of technical manuscripts. Special symbols or
fonts that can be defined by or for the user can be produced
(if the hardware is capable!). Super and subscripts can be
handled as well as backspace even for printers without
reverse scrolling or backspacing hardware capabilities.
However, the output device should recognize separately the
<CR> and <LF> functions. The Epson MX-80 with GRAFTRAX 80
was used by the author for most of the development, however
he also was able to use the video display of the Exidy
Sorcerer, which has user definable graphics. "Preprocessor"
directives can be used to merge stock phrases, boiler plate,
make macro definitions, automate numbering, and create
diversions (for footnotes, table of contents, etc.)

To support the capabilities of WORDSTAR[tm by MicroPro]
extended underlining, strikeout, and multiple strike
capability are provided as well.

Sample calls:

A>roff4 filename1 filename2 filename3 +)

Page 1

ROFF4 V1.61 Augest 3,1985

this would send the formatted version of these three
files to the console and to the printer

A>roff4 filename1 +)&filename2

this would format filename1 and send it to the
printer, console, and to filename2.

A>roff4 -s -f filename1 -b filename2 -f -m -r -d -i -g -*

The option, -s, causes the formatter to stop (pause)
at the start of each page of output; the bell at the
console is sounded (if it exists!) and the program
waits until any key is pressed at the console. It is
essential for printers that are feed single sheets at
a time!

I do not use the redirection output feature of DOS 2.0
or higer because this feature is extremely slow (30 times
slower) and the output will contain some unwanted characters.
Hence the symbol '&' is used for specifying the output file
name.

An option that was not shown above, -o[page or range],
is used to selectively generate output of ONLY certain
pages. It is useful to retype pages that got "eaten" by the
printer (Henry Harpending's aptly put language). To retype
only page 23, say, make the option: -o23 To retype pages 23
through 29 use: -o23-29 To retype pages 23 to the end use:
-23- These options changes the values of the internal
variables, FIRSTPAGE and LASTPAGE which originally have the
values of 1 and 30000, respectively. Normally this option
would be placed early enough in the command line that no
pages have been printed yet.

The option, -f, would introduce a formfeed (0CH) into
the output stream (useful for placing blank pages, or
aligning printer pages) where it appears; in this example,
before the first page of output, and, again, at the very end
of the output.

The option, -b, turns on the "debug" flag so as to print
out lots of diagnostics to the STDERR[console]. Probably
only useful for those who are trying to trace the operation
of the formatter for elusive bugs". This option is usable
only when DEBUGON is defined during compilation. See the file
"ROFF4.H"

The option, -m, causes a list of macro definitions to be
typed to the console. It is a useful tool for debugging

complex macro packages where the preprocessor's expansions
are too subtle for humans.

The option, -d, causes a list of diversion files to be
typed to the console. Its main virtue is to remind the user
what files are being generated and their approximate size.

Page 2

ROFF4 V1.61 Augest 3,1985

The option, -i, causes a list of string insertions to be
typed to the console. Useful for macro writers, as was the
-m, described above. Also, for noting what are the settings
of "standard substitutions", such as "today's date".

The option, -r, causes a list of number registers to be
typed to the console. Could be useful to find the number of
footnotes, etc.

The option, -g, causes a glossary of defined translated
characters to be printed on the output device. It is useful
to check the appearance of all special definable characters
and to produce a "wall chart" of special characters
available.

The default option, -*, (the * could be any unassigned
option) means keyboard input (buffered line-by-line with a
prompt with the character used in the option, here *).
Typing a control-Z indicates an end-of-file; the formatter
will continue with the next named file. It is intended as a
learning aid since one can tryout "tricky" input such as
equations. As with standard CP/M, a control-P can be used to
toggle the printer to display output that would normally be
sent to the console; also, one can edit the keyboard input
with the backspace key.

Using ROFF4, you can make nice printouts of a file, with
as little or as much help from the program as you want,
depending on the commands. There are default values for all
parameters, so if you don't put any commands in at all, your
file will come out with filled, right-justified lines. The
default line-length is 60 characters; the default page-
length is 66 lines per page. "Filled lines" means that as
many input words as possible are packed onto a line before it
is printed; "non-filled" lines go through the formatter w/o
rearrangement. "Right-justified" simply means that spaces
are added between words to make all the right margins line up
nicely. To set a parameter, use the appropriate commands
below. All commands have the form of a period followed by two
letters. A command line should have nothing on it but the
command and its arguments (if any); any text would be lost.

Extra space will separate text sentences. The sentence
is recognized by a trailing ':',';','!','?', or a '.'. For

the '.' there is the additional requirement that either two
or more spaces must spaces must follow it, or that it is at
the end of the source line.

A command argument can be either ABSOLUTE or RELATIVE :

.in 5 sets the indent value to 5 spaces

.in +5 sets the indent value to the CURRENT value+5

.ls -1 sets the line spacing to the current value-1

Also, all commands have a minimum and maximum value that
will weed out any odd command settings (like setting the line
spacing to zero, for example. It won't let you do that, but
it could be changed if you REALLY have a burning desire to do

Page 3

ROFF4 V1.61 Augest 3,1985

so).

Some commands cause a "break", which is noted in the
table below. Before such a command goes into effect, the
current line of text is put out, whether it is completely
filled or not. (this is what happens at the end of a
paragraph, for example.) A line beginning with spaces or a
tab will cause a break, and will be indented by that many
spaces (or tabs) regardless of the indent value at that time
(this is a "temporary indent", which can also be set
explicitly). An all blank line also causes a break. If you
find that some lines that are indented strangely, and it's
not obvious WHY, look at which commands are causing a break,
and which aren't. For instance:

.fi

.ti 0
this is a line of text
.in 8

<- blank line
more text for the machine to play with

At first glance it seems obvious that the line "this is
a line of text" will be indented zero spaces, but it won't -
it will be indented 8. The indent command does NOT cause a
break (although the .ti does) so it will not cause the line
to be put out before setting the indent value to 8. Then,
when the blank line is encountered, it will cause a break -
and "this is a line of text" will be indented incorrectly.
The above example will give the following lines.

this is a line of text

more text for the machine to play with

It is worthwhile considering placing a ".br", the break
command, before each use of ".in"; should future versions of
ROFFn have the break already part of the indent command?

Certain system variables are "stacked" to enable
reversion to earlier environments instead of "hardcoded"
defaults. For example:

.ls 1
.
.
.ls

The first command will produce single line spacing (which is
the default, but which may have been set otherwise at the
beginning of the manuscript). The second command causes
resumption of the original line spacing (either the default
or whatever had been chosen previously). Stacked variables
include: linespacing, indent column, right margin,
translation flag character, page length, top and bottom
margin sizes, unexpandable space character, output width,
tabsize, and control flag character.

Page 4

ROFF4 V1.61 Augest 3,1985

*********************** Table of Commands *********************

Command Break? Default stacked Function
------- ------ ------- ------- ---------
.. string no string is "mere"comment

.ab no immediate abort back to
system

.bj yes break with right
justification (current
line only)

.bp n yes n = +1 begin page numbered n

.br yes cause a break (this
line is not justified)

.cf c no c = '^' Yes to be used as a prefix
to a character that
controls print func-
tions such as ^+,^-
might be used to
bracket superscripts,
somewhat like
WORDSTAR(TM).

.ce n yes n = 1 center next n lines

.db n no n = 0(NO) set debug flag 1 for
diagnostics

.di name no JUNK.$$$ diversion file
(see "PREPROCESSOR")

.dm name no define (multiline)
macro ("PREPROCESSOR")

.ds /../../../ no null string define string replace-
ment ("PREPROCESSOR")

.ed no end diversion
(see "PREPROCESSOR")

.ef /../../../ no blanks even footer titling

.eh /../../../ no blanks even header titling

.em end macro
(see "PREPROCESSOR")

.fi yes start filling lines

.ff n no n = 1(yes) initially, formfeeds
are "off". Can turn
them on. Each page
then terminated with
one formfeed.

Page 5

ROFF4 V1.61 Augest 3,1985

.fo /../../../ no empty sets both even and odd
page footers

.fr # base - ; no 1,no action defines how to put
- - - - . output device in mode

for fractional line
spacing(for super,sub-
scripting);see details
given below. Comple-
ments .WH, below.

.he /../../../ no empty sets both even and odd
page headers

.ic c no c = '\' Yes? to specify the char-
acter used for macro
preprocessing to denote
the token that follows.

.ig string no "ignore" string(see ..)

.in n no n = 10 Yes set indent value to n

.ju no initially on turn on right justifi-
cation (only applicable
if "filling" also)

.ls n no n = 1 Yes set line spacing to n

.m1 no n = 2 Yes set topmost margin to n

.m2 no n = 2 Yes set 2nd top margin to n
lines

.m3 no n = 2 Yes 1st bottom margin to n
lines

.m4 no n = 2 Yes bottom-most margin to n
lines

.ne n no/yes n = 2 "need" n lines; if have
them no action; else
begins new page

.nf yes stop filling lines

.nj no initially turn off right justi-
is justifying fication (only relevent

if "filling" also)

.of /../../../ no empty odd page footer title

.oh /../../../ no empty odd page header title

.ou base - - ; no not applicable direct output of code
- - - . sequences to output.

Page 6

ROFF4 V1.61 Augest 3,1985

.ow no n = 80 sets output width for
header and footer title

.pc c base - ; no not applicable used to create
- - - . definitions for special

printer controls, such
as for italics.

.pl n no n = 66 Yes sets page length to n

.rg name n no n=0 No create or modify
register variable
(see "PREPROCESSOR")

.rm n no n = 70 Yes sets right margin to n

.sa string "say": message to
console; like a comment
but displayed to
operator during run.

.sc c no blank Yes space character; the
visible character
that will be trans-
literated to unexpanded
blank.

.so filename no ignored Yes reads named file into
input stream; cannot be
invoked from keyboard
input.

.sp n yes n = 1 space down n lines

.st n no n=1(yes) stop(pause)at each page
start; initially off;
may also be enabled by
the -s option.

.tc c no Ü Yes set translation flag
character, see .tr

.tr c base - ; no not applicable used to create
- - - . definitions for special

character fonts.

.ts n no n = 8 Yes sets value of tab space

.ti n yes n = 0 set temp. indent of n

.wh no no action instructs how to resume
whole line spacing;
complements .FR, above.

Page 7

ROFF4 V1.61 Augest 3,1985

Here's what the page parameters look like:

|<--------output width (.ow)------------------->|

_ ___
	top margin(m1) - (includes header)

	top margin 2

P | : : |
A | :<-indent : |
G | : : |
E | :lots and lots of silly text and: |
L | :other garbage. Get the picture?: |

E | :This is a temp. indentation: |
N | : : |
G | : right margin -> : |
T | : : |
H | : : |

	margin 3

	margin 4 - (includes footer,perhaps ff)
- ---

Minimum acceptable values for M1, M2, M3, and M4; if M1 is
set to zero, no header will be shown (even if one was
declared). Similarly, if M4 is set to zero, no footer will
be displayed.

To change the default for any parameter, simply alter
ROFF4.H and reExecute COMPILE.BAT.

**
A Few Extra Comments on Some of the Commands:
**

If you want to center lots of lines, but don't
want to count them, do something like this:

.ce 1000
lots and
lots of words to
be centered
.ce 0

will give the lines:
lots and

lots of words to
be centered

A new paragraph may be caused by using the temporary
indent command, like

.ti +5

Page 8

ROFF4 V1.61 Augest 3,1985

or by simply beginning the paragraph with a tab, as you would
if you were just typing.

For special cases, where you wish to place the last
"word" at the right-hand margin, such as numbers of equation,

for example:
x = y+z (12)

you could input:
x#=#y+z (12)
.bj
because we force a break with justification (.bj) of the line
with only "three words". (The # is assumed to be the "space
character" set up with a .sc command).

Headers and Footers.

A page number can be incorporated into any header or
footer by putting a "#" in the title where you want the
number to go:
.he /This is a witty header title for page #/
Each time this is printed at the top of a page, the current
page number will be substituted for the "#". Each footer and
header are ".in 0", even if text is indented.

Headers and footers are in three parts. These parts are
left justified, centered, and right justifed. Any of these
three parts may be left out. The right justification is
fixed to the margin that is set by the .OW command. One may
pick the headers and footers separately for even and odd
pages. For example, one could place even and odd page
numbers at the bottom outside of each page by:
.ef /Page #///
.of ///Page #/

Any printable character, here the '/', can be used to
delimit the three strings that make up the titles, so long as
it is not the "insert character" (usually, '\') and is not
present in any of the three strings.

The program can be made to wait for the operator to load
single sheets of paper by the -s option and/or by the
command: .st

If you want to send the output to a file, and don't want
the page breaks in there set margins 1-4 to zero.

Page 9

ROFF4 V1.61 Augest 3,1985

Where you need to supply code sequences for immediate or
for subsequent output (for .ou or for .tr) one needs to

supply the number base (binary, octal, decimal, or
hexadecimal) by supplying a token that begins with (upper and
lowercase are both o.k.): b, o(or q), d, or h. Following the
base on the same and/or subsequent lines one supplies the
codes that will form the "code string". These codes are
delimited by white space (not commas!) and the sequence is
eventually terminated by a token beginning with a period.
The ends of any of these lines may contain comments if they
are set off by white space and a semicolon. For examples:
.ou hex 11 1C 8C 0
99 6C 55 ;get ready!
.end

.TR = binary ;"identity"operator (triple equal sign) on MX-80
00011011 ;ESC
01001011 ;4B
00000110 ;6 bit patterns
0 ;follow:
00101010 ;left top,bot
00101010
00101010
00101010
00101010
00000000 ;right top,bot
.en

The first of these examples might be used to get some
strange printer to cooperate in standing on its head or
something.

The second, lengthier example is taken from a file, MX,
that defined quite a number of special characters for the
MX-80 with GRAFTRAX 80. Because that printer uses dot
graphics, I chose to make the definition in binary so that
the placement of the individual dots is easier to visualize.
Later, in the text the combination: Ü= will cause the
printer to be sent this code so that it will print the
specialized symbol.

SPECIAL SYMBOLS

If one includes a set of definitions such as in the MX
file, one can specify the use of special symbols, which can
be chosen to fit the application (and the hardware!) For
example, the MX-80 printer equipped with GRAFTRAX 80 can
accept dot addressed graphics. [See the MX file for examples
with this hardware]. Other printers may be able to simulate
symbols by a combination of overstruck characters. Still
other output devices may be capable of displaying desired
special symbols by use of the "parity bit".

The .tr and .tc commands define the codes for the
special symbols and the translation character. To create a
"wall chart" that lists the special characters on the output
device you could use the -g option on the command line, for

Page 10

ROFF4 V1.61 Augest 3,1985

example:
A>roff4 mx -g)

====================================

PRINTER CONTROL

It is assumed that the output device can accept carriage
returns and will not linefeed in the absence of the linefeed
character. Using this assumption, super- and subscripting,
backspacing, underscoring, strickout, and multiple
impressions are supported in a manner somewhat analogous to
WORDSTAR [tm by MicroPro], but more generally.

If the printer can be placed in fractional linespacing
mode, so much the better, as full line spacing for super- and
subscripts does not look as "natural". Also, with the half
line spacing, one can build up larger characters (such as
summation and integration symbols) since some overlap does
occur. To implement such fractional spacing one uses the
commands, .fr and .wh (probably at the beginning of the input
file, along with other information relevent to the output
device and style). These commands describe the operational
codes sent to the output to switch the printer to FRactional
spacing and back to WHole line spacing.

For example, I use for the MX-80 printer equipped with
GRAFTRAX 80 the following:

.WH HEX 1B 32 . ; 6 lines/inch is standard

.fr 2 hex 1b 33 12 . ; 18/216" = halfline spacing

The initial 2 in .fr tells the formattter that 2 fractional
[half] lines are equivalent to a conventional whole line.
The original description of the required codes were in
hexadecimal, so I kept matters as simple as possible by using
the same number base so that I would not make any conversion
mistakes!

The printer control requests are embedded in the text;
they are NOT set off in separate lines as the "dot" commands
are set apart. Each request is made up of two printable
characters, the first of which is the "control flag
character" (the default is '^'). Here is a table of control
functions presently supported by ROFF4, version 1.30:
(additional codes can be created with the "printer control"
command, .pc)

^+ up a fractional line; may be used several times to
increase vertical rise. [used at start of a
superscript and at the end of a subscript]

^- down a fractional line; may be used several times to

increase vertical drop. [used at the start of a
subscript and at the end of a superscript]

Page 11

ROFF4 V1.61 Augest 3,1985

^h,^H backspace one character column. Do NOT backspace
over ordinary blanks ("unexpandable" space is o.k.)
if you are in "fill" mode.

^(,^) Note current column position; return to noted position.
^[,^] " " " " " " "
^{,^} " " " " " " "

The above three pairs of controls are often more
convenient then multiple, explicit backspaces, ^H,
especially for "built-up" fractions and matrices.

^B,^b Start, end boldface (increase, decrease the number of
impressions by a factor of 3).

^D,^d Start, end doublestrike (increase, decrease the
number of impressions by a factor of 2).

^U,^u Start, end underscore (will not underscore expandable
white space; will ride up and down with super and
subscripts.)

^X,^x Start, end strikeout (similar to underscore, above,
but overprints with '-' instead of underlines).

Note that the last 4 pairs are "case sensitive";
namely, the uppercase starts some activity, whereas the
lowercase equivalent sqelches it; these controls are NOT
"toggles".

An involved example of the use of printer controls would
be to create a 3 by 3 matrix:

MATRIX =#^+^+^(|1#2#3|^)^-^-|4#5#6|^)^-^-|7#8#9|^+^+

which should produce (with a half-spacing) printer:

|1 2 3|
MATRIX = |4 5 6|

|7 8 9|

[the demonstration file, MATRIX, has been provided as a
demonstration of the above].

Several points should be observed. There should be no
expandable blank spaces if you are in fill mode, otherwise,
the result might be very strange! (ROFF4 does some checks to
flag such attempts). We are assuming here that the '#' are
unexpandable spaces (chosen with the .sc command). The first

printable character in the complex, the '=', is at the
leftmost edge; the last printable character, the '|'
following the '9', is at the rightmost edge of this
assemblage. The final height is adjusted (by the trailing
^+^+) to match the initial height. The present limit of the
line buffering is 255 characters; I assume that is not too
chancy.

Page 12

ROFF4 V1.61 Augest 3,1985

One can define additional printer control codes using
the .pc command. For example, the MX-80 printer with
Graftrax is switched to italics with the sequence <ESC> '4';
and italics are turned off with <ESC> '5'. We could define
^I to start italics and ^i to end them:

.pc I hex ;italics on (MX-80 Graftrax)
1B 34
.en
.pc i hex ; italics off (MX-80 Graftrax)
1B 35
.en

================================

THE PREPROCESSOR

In the following we describe the advanced macro
preprocessing features of this formatter which provide users
with labor saving tools but which are probably not necessary
at first. The beginning user may be able to achieve most
goals without the "preprocessing", but by using an editor
more then otherwise. The more advanced user will begin to
appreciate these features more.

In the following discussion we will assume the default
insert character, '\', and the default command character,
'.', will be used. (It is rare that you should change these
anyway!)

The insert character is used to denote where a
replacement should be used. For example, in:

Today, \date\, is special.

the block, "\date\", would be replaced as this sentence is
being input. If a prior string definition of the form:

.ds *date*January 1, 1983*

had been processed previously then the example, after text
substitution, would become:

Today, January 1, 1983, is special.

The string definition command, .ds, expects that the
first visible character, here a '*', is the delimiter of the
start and end ot the two parts in the definition; any
printable character (that is not present in either string!)
may be used.

If no string definition had been provided for "date",
the user will be prompted while the formatter is trying to
input this sample line. The console will get some message
like:

[Bell]Please define <date>:

Page 13

ROFF4 V1.61 Augest 3,1985

Whatever you type in will be used to form an "effective"
.ds definition. This feature should be useful in
applications where information should be changed or updated
each time the formatter is run, such as today's date, the
addressee's name and address in a form letter, etc. A sample
file, FORM is included to demonstrate both of the above means
to define string substitutions.

An important restriction must be observed when using
"definitions on the run". They must not be first used inside
of multiline definitions (namely inside of .ou, .tr,
.dm, .pc, .wh, and .fr) because the building of both
definitions will cause them to interfere with each other.
ROFF4, v1.6 will test for such contention and abort operation
if one is found. An example of such a situation and its
remedy is shown below:
.sa chose 0 for DRAFT and 1 for CORRESPONDENCE
.ou hex
1B
3\font\
.end .ou

This example, which might be used to initialize the
Okidata Microline 92 printer to go into correspondence
quality or into draft quality printing would cause problems
if "font" is supposed to be defined here during execution.
We are in the midst of defining an output string for the
printer (ESC "0" or ESC "1") when we are asking ROFF4 to
create (simultaneously) a definition for "font"; the program
will abort rather than continue with the two definitions
mangling each other. Here is a modified version of above
without the problem:

.sa chose 0 for DRAFT and 1 for CORRESPONDENCE

.. this comment containing \font\ is "ignored"

.ou hex
1B
3\font\

.end .ou

The fix here is that the formatter will encounter
"\font\" in the comment and complete a definition for "font"
before takling the .ou command; no simultaneous definitions,
no problems!

Similar to string definitions are register variables,
which are created and modified with the .rg command.
Variables are useful for enumeration such as equation
numbering:

.rg eqnum 1

would create a register named "eqnum" with the current value
of 1. The the text might use it with, say:

x = y+1 (\eqnum\)

which would be converted on input into:

Page 14

ROFF4 V1.61 Augest 3,1985

x = y+1 (1)

A subsequent instruction:

.rg eqnum +1

would take the current value of "eqnum" and increase it by 1
(so that it would now be 2 in our example:

a = b+c (\eqnum\)

would become:

a = b+c (2)

There is a special, reserved insertion, \#\, which will
provide the current page number. It should prove useful in
setting up tables of contents (see "diversions", below).
Trivial examples of its use are to be found in the files,
BPTEST and MARGINS. In rare cases it may be off one page
because it may be read while between pages; how can one
handle the sentence, "This sentence is on page XXX," when the
sentence straddles two pages?

Since we have defined a special register name, '#', we
should comment on what happens if you create a register
instruction with that name, such as:

.rg # +1

You will be changing the value of the page number of the
FOLLOWING pages. This is useful for leaving gaps in the

pagination for later inclusion of full page illustrations.
This feature is demonstrated (tested) in the file, MARGINS.
I wish to thank Henry Harpending for suggesting this.

The insert character has other properties. The insert
character can be placed into the input by repeating it,
namely, "\\" becomes "\". (useful for delaying
substitutions). For example, defining:

.ds 'EN'(\\eqnum\\)'

will identify "EN" with "(\eqnum\)" and so our equation
example above could have been:

a = b+c \EN\

Delaying the evaluation of "eqnum" until EN is invoked
(instead of when it was defined) means that the proper
numbering of equations will occur instead of wrongly
supplying the value of "eqnum" from the time that EN was
first created.

If the insert character is at the end of a line, it
negates the following newline sequence; thus the next line
is merged with the current line. For example:

Page 15

ROFF4 V1.61 Augest 3,1985

antidisestab\
lishmentarianism

is equivalent to:

antidisestablishmentarianism

"Macro" definitions are used when we wish to identify
several lines with an insertion. Such definitions are
created with the .dm ["define macro"] and completed with the
.em ["end macro"] commands. For example, we might wish to
use the following sequence over and over again at the start
of paragraphs:

.sp 1

.ne 2

.ti +5

to separate the paragraphs by blank lines, keep them
from starting excessively close to the bottom of the page,
and indenting them 5 spaces to the right of the current left
margin. We might want to define the "command" as "paragraph"
[personally, I might call it "P", because it would be used a
lot and my typing ...]:

.dm paragraph

.sp 1

.ne 2

.ti +5

.em

Subsequently, whenever we wished to start a paragraph we
would creat a command line:

.paragraph

instead of more tediously creating every time the three
commands we mentioned above.

The names of all macros, strings, and number registers
are "case sensitive". That is to say that capitalization
and/or lower case are distinguished and, say,

.Paragraph

Would not be recognized as the same as the sample macro we
just defined. However, all the "built-in" commands, those
which were listed in the command table, are not case
sensitive and are recognized on the first two letters alone,
even if arbitrary letters or numbers follow immediately. If
we had a line:

.time

it would be identified with a "time" macro definition, if one
had been created; It would not be confused with a "Time"
macro definition. If there is no "time" macro, then it would
be matched with the "built-in", .TI ["temporary indent"].

Page 16

ROFF4 V1.61 Augest 3,1985

A macro command may contain parameters(s). For example

.dm HEADING

.sp 2
^B$0^b
.sp 2
.em
defines a macro for printing heading. When the line ".HEADING
Heading" appear on the beginning of a line, the word
"Heading" will be printed in boldface with two blank lines
above and below. i.e.

HeadingHeadingHeading

The maximum number of parameters for a macro is 10
($0-$9). The parameter(s) must be on the same line of the
macro call. The parameters are separate by a

non-alphanumeric character except '+' and '-' which appear as
the first character of the parameter line. If the first
character is a alphanumeric character, then white space will
be assumed as the delimiter. An example can be found above.
If the require parameter(s) is/are not defined by the macro
call, then the parameter(s) will be treated as null string.

There is another object formed and used somewhat like a
macro; it is called a "diversion (file)" and is useful for
making lists such as references [footnotes] and tables of
contents. A diversion is created or continued with the
commands: .DI [diversion] and .ED [end diversion]. A
diversion can grow to be quite large and is, in fact, a disk
file. To "regurgitate" the diversion file, its name can be
placed in the original command line, along with the other
input file names; alternatively, files can be retrieved with
the .SO ["source"] command. The advantage of using .SO is
that inclusion can be accomplished without a page break, nor
even a line break between input files. The
.SO command is like a "CALL" or "GOSUB" in that there can be
nested .SO invokations; one can access a file with .SO that
contains in turn a .SO command, etc. It is a limitation of
ROFF4 at present to not be able to handle the .so command
from keyboard input (it could be useful). The files, SOTEST,
ONE, TWO, and THREE are provided to test and demonstrate the
.SO command.

All file names referenced by .di and .so are
automatically treated as uppercase. The naming conventions
should conform to the operating system (CP/M). It is a
limitation of the formatter at present to not realize that
"A:ZZ" would be the same as "ZZ"; be sure to use the same
form throughout!

We shall present a detailed example of the use of the
above preprocessing commands to automate footnote and
reference numbering and collection.

Page 17

ROFF4 V1.61 Augest 3,1985

We start by creating a register variable, "f#", to keep
track of the current footnote number:

.rg f# 1

We shall use, say, "[15]" as our means to display
reference numbering. (We could have used superscripts
instead with "^+15^-"):

.ds "fn"[\\f#]"

We have used "\\" so that "fn" is defined as "[\f#\] and will
be evaluated with the current footnote number at the time of
use (not of the time we nade this .ds definition). By typing

\fn\ we will get the reference in the form, "[number]", that
we wanted.

We want to create a diversion, "FNOTES", into which we
will place all our references. The head of this file will be
titled with "REFERENCES":

.di fnotes

.ls 1

.sp 1

.ce 1
REFERENCES
.sp 2
.ed

The diversion will contain (hopefully) a list of
numbered footnotes. To make the addition of these footnotes
as painless as possible, we define two macros, "FS" [footnote
start] and "FE" [footnote end]:

.dm FS

.di fnotes

.sp 1
\\fn\\\\
.em

and:
.dm FE
.ed
.rg f# +1
.em

The FS macro skips a line and attaches the evaluation of
\fn\ to the start of the line that follows the macro during
execution. The lines that follow the FS macro will be
diverted to FNOTES. The FE macro terminates the diversion
and, also, increments the footnote number, f#.

We could try a very small piece of text now:

.nf
It is a nice day.\fn\
.FS
conventional expression.

Page 18

ROFF4 V1.61 Augest 3,1985

.FE
It's a crummy day.\fn\
.FS
unconventional!
.FE

The formatter will generate:

It is a nice day.[1]
It is a crummy day.[2]

and the diversion file, FNOTES, will contain:

.ls 1

.sp 1

.ce 1
REFERENCES
.sp 2
.sp 1
[1]conventional expression.
.sp 1
[2]unconventional!

which, after formatting, will be:

REFERENCES

[1]conventional expression.

[2]unconventional!

Page 19

�

